miércoles, 20 de octubre de 2010

Bases de Datos: DATA MINING

¿Qué es una Base de Datos?

Una base de datos o banco de datos (en ocasiones abreviada B.D.D.) es un conjunto de datos pertenecientes a un mismo contexto y almacenados sistemáticamente para su posterior uso. En este sentido, una biblioteca puede considerarse una base de datos compuesta en su mayoría por documentos y textos impresos en papel e indexados para su consulta. En la actualidad, y debido al desarrollo tecnológico de campos como la informática y la electrónica, la mayoría de las bases de datos están en formato digital (electrónico), que ofrece un amplio rango de soluciones al problema de almacenar datos.
Existen programas denominados sistemas gestores de bases de datos, abreviado SGBD, que permiten almacenar y posteriormente acceder a los datos de forma rápida y estructurada. Las propiedades de estos SGBD, así como su utilización y administración, se estudian dentro del ámbito de la informática.
Las aplicaciones más usuales son para la gestión de empresas e instituciones públicas. También son ampliamente utilizadas en entornos científicos con el objeto de almacenar la información experimental.
Aunque las bases de datos pueden contener muchos tipos de datos, algunos de ellos se encuentran protegidos por las leyes de varios países.


Data Mining

La minería de datos (DM, Data Mining) consiste en la extracción no trivial de información que reside de manera implícita en los datos. Dicha información era previamente desconocida y podrá resultar útil para algún proceso. En otras palabras, la minería de datos prepara, sondea y explora los datos para sacar la información oculta en ellos.
Bajo el nombre de minería de datos se engloba todo un conjunto de técnicas encaminadas a la extracción de conocimiento procesable, implícito en las bases de datos. Está fuertemente ligado con la supervisión de procesos industriales ya que resulta muy útil para aprovechar los datos almacenados en las bases de datos.
Las bases de la minería de datos se encuentran en la inteligencia artificial y en el análisis estadístico. Mediante los modelos extraídos utilizando técnicas de minería de datos se aborda la solución a problemas de predicción, clasificación y segmentación.

Un proceso típico de minería de datos consta de los siguientes pasos generales:
  1. Selección del conjunto de datos, tanto en lo que se refiere a las variables objetivo (aquellas que se quiere predecir, calcular o inferir), como a las variables independientes (las que sirven para hacer el cálculo o proceso), como posiblemente al muestreo de los registros disponibles.
  2. Análisis de las propiedades de los datos, en especial los histogramas, diagramas de dispersión, presencia de valores atípicos y ausencia de datos (valores nulos).
  3. Transformación del conjunto de datos de entrada, se realizará de diversas formas en función del análisis previo, con el objetivo de prepararlo para aplicar la técnica de minería de datos que mejor se adapte a los datos y al problema, a este paso también se le conoce como preprocesamiento de los datos.
  4. Seleccionar y aplicar la técnica de minería de datos, se construye el modelo predictivo, de clasificación o segmentación.
  5. Extracción de conocimiento, mediante una técnica de minería de datos, se obtiene un modelo de conocimiento, que representa patrones de comportamiento observados en los valores de las variables del problema o relaciones de asociación entre dichas variables. También pueden usarse varias técnicas a la vez para generar distintos modelos, aunque generalmente cada técnica obliga a un preprocesado diferente de los datos.
  6. Interpretación y evaluación de datos, una vez obtenido el modelo, se debe proceder a su validación comprobando que las conclusiones que arroja son válidas y suficientemente satisfactorias. En el caso de haber obtenido varios modelos mediante el uso de distintas técnicas, se deben comparar los modelos en busca de aquel que se ajuste mejor al problema. Si ninguno de los modelos alcanza los resultados esperados, debe alterarse alguno de los pasos anteriores para generar nuevos modelos.
Si el modelo final no superara esta evaluación el proceso se podría repetir desde el principio o, si el experto lo considera oportuno, a partir de cualquiera de los pasos anteriores. Esta retroalimentación se podrá repetir cuantas veces se considere necesario hasta obtener un modelo válido.
Una vez validado el modelo, si resulta ser aceptable (proporciona salidas adecuadas y/o con márgenes de error admisibles) éste ya está listo para su explotación. Los modelos obtenidos por técnicas de minería de datos se aplican incorporándolos en los sistemas de análisis de información de las organizaciones, e incluso, en los sistemas transaccionales. En este sentido cabe destacar los esfuerzos del Data Mining Group, que está estandarizando el lenguaje PMML (Predictive Model Markup Language), de manera que los modelos de minería de datos sean interoperables en distintas plataformas, con independencia del sistema con el que han sido construidos. Los principales fabricantes de sistemas de bases de datos y programas de análisis de la información hacen uso de este estándar.
Tradicionalmente, las técnicas de minería de datos se aplicaban sobre información contenida en almacenes de datos. De hecho, muchas grandes empresas e instituciones han creado y alimentan bases de datos especialmente diseñadas para proyectos de minería de datos en las que centralizan información potencialmente útil de todas sus áreas de negocio. No obstante, actualmente está cobrando una importancia cada vez mayor la minería de datos desestructurados como información contenida en ficheros de texto, en Internet, etc.


Por Ejemplo

Negocios
La minería de datos puede contribuir significativamente en las aplicaciones de administración empresarial basada en la relación con el cliente. En lugar de contactar con el cliente de forma indiscriminada a través de un centro de llamadas o enviando cartas, sólo se contactará con aquellos que se perciba que tienen una mayor probabilidad de responder positivamente a una determinada oferta o promoción.
Por lo general, las empresas que emplean minería de datos ven rápidamente el retorno de la inversión, pero también reconocen que el número de modelos predictivos desarrollados puede crecer muy rápidamente.
En lugar de crear modelos para predecir qué clientes pueden cambiar, la empresa podría construir modelos separados para cada región y/o para cada tipo de cliente. También puede querer determinar qué clientes van a ser rentables durante una ventana de tiempo (una quincena, un mes, ...) y sólo enviar las ofertas a las personas que es probable que sean rentables. Para mantener esta cantidad de modelos, es necesario gestionar las versiones de cada modelo y pasar a una minería de datos lo más automatizada posible.

Hábitos de compra en supermercados
El ejemplo clásico de aplicación de la minería de datos tiene que ver con la detección de hábitos de compra en supermercados. Un estudio muy citado detectó que los viernes había una cantidad inusualmente elevada de clientes que adquirían a la vez pañales y cerveza. Se detectó que se debía a que dicho día solían acudir al supermercado padres jóvenes cuya perspectiva para el fin de semana consistía en quedarse en casa cuidando de su hijo y viendo la televisión con una cerveza en la mano. El supermercado pudo incrementar sus ventas de cerveza colocándolas próximas a los pañales para fomentar las ventas compulsivas.

Patrones de fuga
Un ejemplo más habitual es el de la detección de patrones de fuga. En muchas industrias —como la banca, las telecomunicaciones, etc.— existe un comprensible interés en detectar cuanto antes aquellos clientes que puedan estar pensando en rescindir sus contratos para, posiblemente, pasarse a la competencia. A estos clientes —y en función de su valor— se les podrían hacer ofertas personalizadas, ofrecer promociones especiales, etc., con el objetivo último de retenerlos. La minería de datos ayuda a determinar qué clientes son los más proclives a darse de baja estudiando sus patrones de comportamiento y comparándolos con muestras de clientes que, efectivamente, se dieron de baja en el pasado.

Fraudes
Un caso análogo es el de la detección de transacciones de blanqueo de dinero o de fraude en el uso de tarjetas de crédito o de servicios de telefonía móvil e, incluso, en la relación de los contribuyentes con el fisco. Generalmente, estas operaciones fraudulentas o ilegales suelen seguir patrones característicos que permiten, con cierto grado de probabilidad, distinguirlas de las legítimas y desarrollar así mecanismos para tomar medidas rápidas frente a ellas.

Recursos humanos
La minería de datos también puede ser útil para los departamentos de recursos humanos en la identificación de las características de sus empleados de mayor éxito. La información obtenida puede ayudar a la contratación de personal, centrándose en los esfuerzos de sus empleados y los resultados obtenidos por éstos. Además, la ayuda ofrecida por las aplicaciones para Dirección estratégica en una empresa se traducen en la obtención de ventajas a nivel corporativo, tales como mejorar el margen de beneficios o compartir objetivos; y en la mejora de las decisiones operativas, tales como desarrollo de planes de producción o gestión de mano de obra.

Comportamiento en Internet
También es un área en boga el del análisis del comportamiento de los visitantes —sobre todo, cuando son clientes potenciales— en una página de Internet. O la utilización de la información —obtenida por medios más o menos legítimos— sobre ellos para ofrecerles propaganda adaptada específicamente a su perfil. O para, una vez que adquieren un determinado producto, saber inmediatamente qué otro ofrecerle teniendo en cuenta la información histórica disponible acerca de los clientes que han comprado el primero.


Fuente:
http://es.wikipedia.org/wiki/Base_de_datos
http://es.wikipedia.org/wiki/Miner%C3%ADa_de_datos

0 comentarios:

 
Powered by Blogger